内电解法是利用铁屑作为滤料组成滤池,废水经滤池发生的一系列电化学及物理化学反应使污染物得到处理的一项新型废水处理技术[1-4]。利用该法对废水进行预处理可降低废水中的CODCr的含量,去除水中色度,提高废水可生化性,并通过混凝作用降低污染负荷。内电解法具有使用范围广、处理效果好、使用寿命长、成本低廉、操作维护方便等优点[5]。本文总结了国内外对内电解的科研成果,论述其基本原理、工业应用、改进方式及发展中存在的一些问题,并探讨了今后的研究应用及方向。
1 基本原理
内电解法是利用废水中的有些组分在有导电介质存在时,自发进行电化学反应,同时兼有絮凝、吸附、共沉淀等综合作用的一种废水处理方法[6]。如铁碳微粒在废水中接触后,利用氧化还原、絮凝等方式去除废水中污染物。
1.1 原电池反应
碳铸铁屑和惰性焦炭颗粒浸于电解质溶液时,形成微小原电池,在其作用空间上形成电场。在电位较低的铁阳极上,铁失去电子生成Fe2+进入溶液,电子流向碳阴极。在阴极附近,溶液中溶解氧吸收电子生成OH-,在偏酸性溶液中,阴极产生新生态[H],进而形成氢气溢出。电极反应:
阳极(Fe) :
Fe→Fe2++ 2e E0 (Fe2+/Fe) =-0.44 V (1)
阴极(C) :
2H++2e→2[H]→H2↑(酸性环境)
E0 (H+ /H2) = 0 V (2)
O2(g) + 2H++2e → H2O2(aq)
E0(O2 /H2O2) = + 0.68 V (3)
充氧时:
O2+4H++ 4e → 2H2O(酸性溶液中)
E0(O2 /H2O) = + 1.23 V (4)
O2+2H2O+4e→ 4OH- (中性或碱性环境中)
E0(O2 /OH) = + 0.40 V (5)
1.2 氢的还原作用
电极阴极产生新生态氢具有较大的活性,能与废水中某些组分发生还原作用,破坏发色物质发色结构,使偶氮基断裂,大分子分解成小分子,硝基化合物还原为胺基化合物,达到脱色的目的且使废水组成向易生化方向转变[5]。
1.3 铁的混凝作用
从阳极得到的Fe2+离子在有氧和碱性条件下会生成Fe(OH)2和Fe(OH)3。具有强吸附能力的Fe(OH)3胶体吸附废水中的悬浮物、一些不溶物及不溶性染料,使其凝聚沉降[7]。
1.4 铁屑的还原吸附和活性炭吸附作用
在弱酸性溶液中,比表面积丰富的铁屑利用其较高的表面活性吸附多种金属离子,促进金属去除。而铸铁是多孔性物质,利用高表面活性吸附废水中有机污染物[5]。活性炭吸附能力强,废水中的固体颗粒易被它吸附。
1.5 电泳作用
在微电池周围电场作用下,废水中胶体状态的带电污染物在静电引力和表面能的作用下,向带有相反电荷的电极移动,附集并沉积在电极上而得以去除[8]。
2 应用研究
现在,内电解法被广泛应用到废水处理工艺中,如石化废水,电镀工艺废水,印染废水,单晶硅工业生产废水,PCB 络合废水等。
2.1 印染废水
张冀鄂等[9]在实验中发现铁屑内电解法在印染废水预处理中,脱色率可达90%以上,去除部分CODCr的同时废水B/C 可达到0.31。张亚静等[10]实验发现铁碳内电解处理污染不严重的印染废水和可溶性染料时,脱色率可达90% 以上,CODCr去除率达70%左右。而利用内电解法和生物有氧过滤结合,处理含有溴乙酸的染料废水,大部分的污染物含量会减少[11]。
2.2 焦化废水
工业中,用生物法处理焦化废水中的氮,需大量硝酸盐回流,还要另加碳源维持微生物生长[12]。处理时间长,投入成本大。潘碌亭等[13]研究得出焦化废水经铁炭内电解处理,污染物质形态和结构发生变化,大分子难降解物质变为小分子易降解物质。且可去除大部分的酚和硫化物,使废水毒性降低。范可等[14]的实验研究得出,内电解法对焦化废水处理后,CODCr去除率为55% ~ 65%,出水CODCr的浓度可以达到钢铁工业污染物排放标准(GB 13456 1992) 中二级排放标准。
2.3 生活废水
生活废水污染物成分复杂多样,为达处理要求常需几种方法组成处理系统。林美强等[15]用微电解-电解法处理餐饮废水的实验表明,微电解预处理废水可有效去除部分污染物,提高污水导电性,减少电极表面污垢,延长电极寿命,降低处理成本。且在适宜条件下,用铁屑微电解-共沉淀法处理屠宰场废水,色度去除率可达100%,CODCr去除率达92.68%[16]。
2.4 其他废水
在其他实验中,分别利用凝固法、电解法和内电解法对农药生产废水进行预处理。结果显示,内电解是其中处理效果好、成本低的最具潜力方法[17]。蒋珍菊等[18]利用内电解法对油田废水进行处理实验发现,混凝沉降后的油气田废水,在一定条件下通过微电解装置,能完全脱色,COD 大大降低,可生化性提高。且进水水质的差异对去除效果影响不大,工艺简单。
但对有些废水并没有利用内电解法进行大量处理,不仅是因为对铁碳内电解法的原理尚未完全了解,更是因为内电解在处理污水的过程中仍存在一些需要研究改进的缺点。
免责声明: 本文仅代表作者个人观点,与 绿色节能环保网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。