由于PET生产尚未达到满负荷,仅年产5×104t,所以高浓度废水流量小于设计量。选取1999年8、9月份(气温较高时节)和1999年12月、2000年1月份(气温较低时节)的几组处理数据进行具体分析,探讨生物膜法运行的一些特点。见表1
表1 厌氧系统稳定运行各项数据
月份 |
厌氧进水流量/(m3·d-1) |
进水COD/(mg·L-1) |
进水pH |
厌氧塔控温/℃ |
出水COD/(mg·L-1) |
出水pH |
厌氧塔去除率/% |
8月均值 |
49.3 |
6636 |
4.66 |
30 |
1652 |
7.64 |
75 |
9月均值 |
64.6 |
5766 |
4.5 |
30 |
2011 |
7.48 |
65 |
12月均值 |
51.4 |
7520 |
3.77 |
26 |
2377 |
7.45 |
68.4 |
1月均值 |
68.2 |
9498 |
4.5 |
26 |
231 |
7.44 |
75.7 |
4.1 进水水质对处理效果的影响
由表1的数据可知:
平均日进水量逐渐增大,平均进水COD浓度逐渐增大,日处理COD总量逐渐增大,但厌氧处理率却稳中有升。说明微生物基本已适应了此种工业废水,生长成熟,充分降解污水中的有机污染物,而且在日处理COD总量有较大增加时,仍有非常好的处理率,显示了生物膜法在抗冲击负荷方面较强的能力。
4.2 温度对厌氧处理效果的影响
一般认为厌氧消化的最佳温度是30~35℃,若低于30℃,处理效果便会降低。但从表1的温度列中可以看出,在12月、1月寒冷时,厌氧塔实际温度只有25~27℃,处理率仍有68.4%和75.7%,丝毫未受温度影响。
4.3 水力停留时间对去除效果的影响
由于生产上排放废水量尚未达到废水站的设计水量,所以实际的HRT=13~17d,停留时间延长,能有利于微生物更充分地降解有机物,提高处理率,使厌氧出口COD充分降低以减轻好氧系统的负担。当然在设计时也并非HRT越大越好,因为会相应增加基建成本,增大反应器体积和占地面积。
4.4 污泥停留时间对去除率的影响
众所周知,甲烷菌的世代期很长,增长速度很慢,只有让污泥在消化器中停留时间足够长才能有效地降解COD,完成甲烷化过程。传统的污泥消化池工艺低效的原因在于池内的污泥停留时间和水力停留时间相等,甲烷菌无法正常生成,从而难以提高处理率。此套生物膜厌氧工艺专门设计了污泥回流泵,将在泥水分离器中沉淀的污泥重新打回厌氧塔,使污泥在塔内不断循环,大大提高了泥龄,提高了污泥浓度,增强了处理能力,而且节省了处理污泥设备。
4.5 pH对厌氧处理的影响
一般认为厌氧反应最佳pH=6.8~7.2。实际运行中发现厌氧出口的pH明显超出此范围,8月平均pH=7.64,9月pH=7.48,12月pH=7.45,1月pH=7.44,表明厌氧塔内呈微碱性状态。当通过人为控制使pH略有降低,但仍在7.0左右,出口COD反而有所上升,当pH重新调高时,出口COD随之下降。碱性状态能抑制有机酸的过分积累,增加缓冲能力,促进甲烷菌的生长。
5 结论
5.1 该套生物膜厌氧反应器随着负荷的提高,处理率也相应提高,且抗冲击负荷能力较强。
5.2 在寒冷冬季,厌氧消化温度偏低,仅有25~27℃,但对反应效果未有影响,只要管理良好,仍能保持高效去除率,说明该系统适应的温度范围较广,对温度要求不高。
5.3 通过设置回流装置,提高HRT和泥龄,能有效地提高处理效果,增加系统污泥浓度,并且几乎不用排泥。
5.4 将厌氧反应器内pH控制在微碱范围内7.40~7.65,能提高消化液的缓冲能力,及时中和积累的有机酸,进而提高去除率。若严格将pH控制在7.0左右,反而会使去除率略有降低。
免责声明: 本文仅代表作者个人观点,与 绿色节能环保网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。