环境污染、全球变暖、能源短缺的压力,使传统的内燃机汽车在进入二十一世纪时面临前所未有的挑战,汽车制造商都努力尝试使用新能源来提高汽车的经济环保特性。各国政府及各大汽车制造商都纷纷投入巨资进行质子交换膜燃料电池(PEMFC)电动汽车的研究与开发。燃料电池汽车技术与传统汽车、纯电动汽车技术相比,具有下面的优势。
(1)效率高 燃料电池的工作过程是化学能转化为电能的过程,不受卡诺循环的限制,能量转换效率较高, 1999年戴姆勒一克莱斯勒推出的燃料电池概念车NECAR 4从油箱到车轮的能量效率为37.7%,而高效汽油机和柴油机汽车整车效率分别为16-18%和22-24%
(2)续驶里程长 采用燃料电池系统作为能量源,克服了纯电动汽车续驶里程短的缺点,其长途行驶能力及动力性已经接近于传统汽车。
(3)绿色环保 燃料电池没有燃烧过程,以纯氢作燃料,生成物只有水,属于零排放。采用其它富氢有机化合物用车载重整器制氢作为燃料电池的燃料,生产物除水之外还可能有少量的CO2,接近零排放。
(4)过载能力强 燃料电池除了在较宽的工作范围内具有较高的工作效率外,其短时过载能力可达额定功率的200%或更大。
(5)低噪音 燃料电池属于静态能量转换装置,除了空气压缩机和冷却系统以外无其它运动部件,因此与内燃机汽车相比,运行过程中噪音和振动都较小。
(6)设计方便灵活 燃料电池汽车可以按照X-By-Wire的思路进行汽车设计,改变传统的汽车设计概念,可以在空间和重量等问题上进行灵活的配置。 在燃料电池汽车国际大开发的背景下,根据中国汽车工业发展的战略需要,中国国家高技术研究发展计划(863计划)的“十五”计划把燃料电池城市客车列为电动汽车重大专项中的一个重要子课题。
燃料电池城市客车项目从2002年初启动,清华大学汽车安全与节能国家重点实验室为研究工作的主要承担单位,第一辆原型车已经在2002年底通过国家验收。
1、整车氢源与动力系统结构选择
设计863燃料电池城市客车首先要选择适合于中国的经济条件和道路条件的氢源方案与动力系统结构。
1.1氢源方案比较
车上供氢系统可分为车载制氢和车载纯氢两大类。
1.1.l车载制氢
车载制氢需要内部高温的燃料处理器,通过重整或部分氧化等方式由燃料中获得氢。用于车载制氢的燃料可以是醇类(甲醇、乙醇、二甲醚等)、烃类(柴油、汽油、LPG、甲烷等)。其它物质如氨、金属或金属氢化物等也可以作为制氢原料。 从技术上看,醇类燃料制氢的温度较低,制氢反应容易实现。其中甲醇通常被认为是最为合适的车载制氢燃料。DaimlerChrysler公司的Necars,于2002年6月4日完成了横穿美国东西部的壮举,行程3000余英里,充分证明甲醇车载重整制氢燃料电池汽车的技术可行性。 烃类比醇类制氢难度大,主要表现在重整的温度高和硫的脱除。烃类燃料中,天然气由于是气态燃料,车载储运比较困难,并且车载重整最难,工作温度最高,一般不作为燃料电池车载氢源的燃料。 其它制氢方法中,氨因为作为制氢原料成本高、有较大的腐蚀性,而且氨完全裂解温度高,因此不适宜选为车载制氢燃料。而金属或金属氢化物水解制氢,由于其高能耗和高成本、以及原料制备过程中的高排放,只能用于特殊的场合,而不适合于大规模的汽车行业。 车载制氢避免了固定的氢制取、运输和加注等基础设施及车载储氢系统的技术问题和投资。不过,在目前中国进行燃料电池汽车自主开发的起步阶段,选用车载纯氢方案更加合理。首先,车载制氢需要复杂的高温燃料处理器,其技术成熟度不及车载纯氢方案。其次,有研究表明,车载纯氢方案在整车能量效率、预期总成本(包括基础设施、燃料和车辆)、减少污染和温室气体排放、减少石油依赖和可持续性发展方面,都比车载制氢方案有利。
1.l.2车载纯氢
车载纯氢方案的燃料链包括了氢集中制备、分离纯化、及储运分配等过程。在燃料电池汽车本身的设计中,主要考虑车载纯氢的储存技术。车载纯氢储存方法主要分为:高压氢气储存、液态氢储存、金属贮氢、活性炭吸附贮氢和碳纳米材料贮氢几种。
(1)高压氧气储存
用氧气压缩机把氢气压缩灌人到车上携带压力容器中,是目前最简单和最常用的车载纯氢储存方法。世界已有的燃料电池大客车示范项目中,采用这种车载储氢方法的就占了大多数。耐高压的储氢压力容器及材料是这种方法的关键。 高压氢气存储方法的主要问题是:①容量小。中国大量使用的是以普通钢材制成的压力容器,储氢压力为15Mpa时,氢的重量仅占总重量的1%,体积容量约0.008kgH2/L。不过,当使用特种高强度奥氏体钢材料制成的容器时,储氢重量可达总重量的2%-6%。②安全性差。高压容器本身就需要特殊的照顾与维护,况且容器中装的是易燃易爆又易渗漏的氢气。车祸时可能有严重的后果。③实施问题。容器压力愈高,充氢站的建设、压缩运行所化的代价愈高。而且充装1立方米氢气要耗电0.5度左右、而1立方米氢气经燃料电池发电仅得2度电。
(2)液态氢储存
戴姆勒一克莱斯勒公司研制开发的NECAR3型和NECAR4型以及通用公司研制开发的“氢动一号”燃料电池电动汽车均采用液氢为燃料。理论上,在各种储氢方式中,无论是从体积密度还是从重量密度的角度看,只有氢气以液态储存才能达到最高的储存密度。目前,液氢存储的重量比约5%-7.5%,体积容量约0.04kgH2/L。不过,由于低温容器的热漏损,液氢的生产、储存、运输对注,以及氢液化消耗大量的能量等问题,使携带液氢规模实施是不可行的。
(3)金属氢化物储氢
该方法首先使氢与金属形成金属氢化物,加热后,金属氢化物分解脱氢而得氢气。 金属氢化物储氢与压力容器储氢相比:①单位重量的储氧量并不高,储氢材料加上容器后,单位重量的储氢量低于高性能材料的压力容器,储氢重量为总重量的1.5%以下。②单位体积的储氢容量有所提高,为0.05kgH2/L。③储氢压力为1-ZMPa,远低于压力容器,提高了安全性,充氢站要求及充氢能耗皆降低。④金属氢化物对氢气中的少量杂质如O2,H2O,CO等有较高的敏感度,高于燃料电池电极催化剂的敏感度,因而提高了对原料氢的质量要求。⑤存在金属氢化物的机械强度、反复充放后的粉碎等问题。目前,金属氢化物可反复充放的次数不多且价格昂贵,所以以金属氢化物作为储氢方法的运行费用是很高的。③储氧化物的容器要能够耐高压,还要有足够的换热面积,能够迅速的传递吸氧和放氢反应过程中释放或者需要的热量。
免责声明: 本文仅代表作者个人观点,与 绿色节能环保网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。