但是,过设计和冗余设计将显著增加成本,而这是制造商所不希望的。因此,更可行、成本更低的作法是研究失效模式和成因然后将该信息回馈至产品进行重新设计。当然,这就需要对大量产品进行现场测试以便发现并验证故障机制和模式。
此外,钱昶认为太阳能逆变器可靠性设计的其它挑战还应包括:具有低可靠性的电解电容并且以合理价格找到不同种类高压、大容量电容器的技术难度;缺少结构化方法进行产品规划和质量控制的不成熟制造工艺也将损害可靠性;另外,工作在恶劣环境下(极低或极高温、潮湿和曝晒)也为可靠性设计带来挑战。
飞兆半导体技术行销助理经理Eric Zhang也认为系统所需的母线电容的确成为影响可靠性的最重要因素,因此设计通常会选择电解电容器,因为它耐受日常温度变化循环,并可在高温下运作。设计人员还必须了解将要并网发电之太阳能电池的额定输出功率,从而选择合适的拓扑(请参考图1),并使用具有足够耐压的功率开关器件。
而英飞凌的高级工程师Jerome Lee则建议,可通过降低电解电容中的纹波电流以延长逆变器的使用寿命。当开关的高频操作与高效率目标发生冲突,需要考虑电容器组是否过大或是出现多相系统。而除了电解电容老化问题,他认为电压额定值下降以及散热效果是影响也是太阳能逆变器可靠性的主要因素,最具成本性能优化的是使用600V级别的功率器件。这时可以通过使用过压保护系统或降压变换器作为输入级以将电压应力减少到500V以下。
IGBT抑或MOSFET?
半导体器件影响逆变器设计的主要因素可以概括为:器件击穿电压、封装、热阻(从结到外壳)、电流等级、导通电压或导通阻抗、寄生电容、开关速度和成本。而设计人员在为太阳能逆变器设计选择功率逆变器件时又将有具体的考虑呢?
就MOSFET和IGBT来说,其选用决策视性能和成本间的权衡而定。一般说,因IGBT的电流更大(是MOSFET的两倍多),所以采用IGBT方案的成本比采用MOSFET的成本低。除成本方面的考虑外,器件性能可由功率损耗表度,而功率损耗可分为:导通和开关两类。作为以少数载流子为基础的器件,在大电流下,IGBT具有更低的导通电压,也就意味着更低的导通损耗。但MOSFET的开关速度更快,所以开关损耗比IGBT低。因此对于要求更低开关频率且更大电流的应用来说,选择IGBT更为适合而且具备更低成本优势。另一方面,MOSFET有能力满足高频、小电流应用,特别是那些开关频率在100kHz以上的能量逆变器模块的需要。虽然从器件成本角度看,MOSFET比IGBT贵,但其处理更高开关频率的能力将简化输出滤波器的磁设计并将显著缩小输出电感体积。
基于上述原因,更多的制造商因此倾向于在中高水平的能量逆变器中采用IGBT。而据Microsemi的钱昶介绍,该公司的MOS8 IGBT在静态和动态测试(最小化的总体功率损耗)方面的优化性能可出色胜任这些应用的要求。另一方面,他强调,即便MOSFET的成本是个主要考量,但为实行一个更优方案,也应重新审视采用MOSFET的潜力,诸如Microsemi的MOS7/MOS8 MOSFET所具备的领先特性就非常适合太阳能逆变器的设计。
DC/AC变换级通常由两个快速开关设备和两个用于极性选择的开关所组成,所以主要损耗表现为传导损耗,也因此需要功率器件具备非常低的正向电压降。功率MOSFET相对于IGBT的一个优势是其不存在拐点电压(knee voltage)。而逆变器设计需要考虑高达700V的输入电压,系统这时会考虑采用降压转换器作为其第一个功率级。
英飞凌奥地利公司的高级工程师?Uwe Kirchner对此建议通过并联三个英飞凌CoolMOS CP系列器件,以在600V级别上获得少于15m欧姆的导通电阻,而CoolMOS 900V系列产品可提供最大导通电阻为130m欧姆的器件。但是对于慢速开关设备,他推荐使用600V 的Trench Stop IGBT。
该公司电源分立器件部负责人Gerald Deboy博士也为逆变器设计的器件选型补充了自己的看法,他认为使用CoolMOS CP还是CoolMOS CED要取决于体二极管的要求。在逆变器中,当体二极管在电压过零点或无功功率的传递过程中的硬换流现象时,使用CED较为有利。而对于IGBT的反并联二极管,则选用SiC肖特基势垒二极管比较合适。因为这时,降压级的续流二极管(free wheeling diode)或电隔离系统中的整流二极管都可从SiC肖特基势垒二极管的零反向恢复特性中受益。
飞兆半导体的Eric指出,在太阳能逆变器拓扑通常也可能包含一个升压级,将输入DC电压提升至充分高于所需峰值输出电压的水平,然后通过DC/AC逆变并入电网。对于升压转换器来说,人们最关心的是升压二极管的开关损耗,反向恢复电荷可能引起高损耗(这取决于功率范围,升压转换器通常使用连续导通模式,这给二极管带来显著的应力)。用于这一功率级的MOSFET的开关损耗亦很重要,因此可考虑选择先进的超结器件(例如600V SuperFET MOSFET)以减少开关和导通损耗。在逆变器级中,通常使用专为软开关而优化的低速 IGBT,以减小输出滤波器的体积,从而降低滤波器的能耗。同时,由于IGBT本身具备稳固性,可以更好地抵抗电网的峰值电压,许多逆变器使用专有拓扑以进一步提升效率,增添更多的功能特性。
实现太阳能逆变器的智能控制
设计太阳能逆变器时要考虑的两个关键因素是效率和谐波失真。效率可分成两个部分:太阳能的效率和逆变器的效率。逆变器的效率在很大程度上取决于设计使用的外部元件,而不是控制器;而太阳能的效率与控制器如何控制太阳能电池板阵列有关。每个太阳能电池板阵列的最大工作功率在很大程度上取决于阵列的温度和光照。MCU必须控制太阳能电池板阵列的输出负载,以使阵列的工作功率最大。由于这不是一个数学密集型算法,因此可使用低成本MCU来完成任务。
而要智能化控制谐波失真,则需要更多处理。若要将系统用作不间断电源(UPS),则需要诸如DSC或DSP等高性能控制器来确保在电网不存在时提供清洁的电能。若太阳能逆变器只在电网存在时工作,则可使用低成本MCU。这是由于电网能吸收太阳能逆变器产生的所有谐波失真,因为电网可以被看作是一个无穷大的负载。对于高谐波失真的太阳能逆变器,Microchip技术开发部的首席应用工程师John Charais推荐使用Microchip的PIC16F和PIC18F MCU系列,这两个系列带有片上ADC和PWM模块,同时PIC12F615到PIC18F “K”或“J”系列MCU等更大的器件均适用。对于低谐波失真的太阳能逆变器,推荐使用PIC32F/30F MCU和dsPIC33F DSC。
此外,TI对太阳能等可再生能源的应用也很关注,但这家以DSP而著名的公司目前向太阳能智能控制领域提供的是两款由DSP演变而来C2000系列MCU。TI高级嵌入式处理器产品部中国区经理谭徽博士认为,标准太阳能系统在多个太阳能电池板上使用一个逆变器,而据相关的研究显示,连接至每个太阳能电池板的微型逆变器能提升功率转换效率以提高每个单电池板的输出,因此TI的C2000 Piccolo和Delfino MCU非常适用于太阳能逆变器应用。其中,Piccolo MCU可为太阳能电池板提供更高的工作效率以及太阳能逆变器控制功能;而Delfino浮点MCU通过不同的AC来源提供常量AC电压,AD/DC整流器后续DC/AC逆变器,在高压(约600V DC)下同步并精确控制功率级。
免责声明: 本文仅代表作者个人观点,与 绿色节能环保网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。