您好,欢迎来到绿色节能环保网 [请登录] [免费注册]
当前位置: 首页 » 技术资料 » 环保技术 > 水处理 » 正文

新型高效污水处理新技术的发展趋势和市场展望

发布时间:2010年7月22日 来源:网易给排水

....


        三、城市污水处理技术问题的思考


        1、关于城镇污水处理主导工艺的思考


        对于引进的工艺技术,在与国外咨询公司合作过程中,大部分较好的实现了预定的目标。但是,往往我们自己设计的污水处理工程项目,在实施的过程中有会出现各种应用不当的问题。这是因为以往我国污水处理技术研究偏重于工艺开发研究,对一种工艺的了解缺乏足够的系统性、完整性,也缺乏对整个处理工艺综合性的比较研究和技术经济评价体系。这也造成我国城市污水处理,在技术选择上摇摆不定、不断刮风。首先80年代末流行AB工艺、然后在90年代出开始流行三沟氧化沟(其他形式的氧化沟),目前又流行SBR(或UNITANK)工艺的原因所在。缺乏全面和综合比较能力,在很长的一段时间内国外的新技术和新产品就不断冲击国内市场,成熟技术和国产技术总是无法在市场上占有一席之地。这是我国城市污水领域存在的问题之一。


        西方国家经过一、二十年的治理工作,一些国家污水处理率达到90%以上。在这一时期(1960-1970年)在城市污水处理领域出现大量各种形式的污水处理新工艺,如:活性污泥的AO工艺、A2O工艺、卡鲁塞尔氧化沟、奥贝尔氧化沟、SBR工艺(IECAS、CASS 等等)、纯氧(富氧)曝气、深井曝气、流化床和厌氧-好氧处理等一系列新的处理工艺。而进入90年代,西方国家城市污水处理市场需求萎缩,一个国家一年仅有一、两个城市污水处理厂的建设,所以在技术上失去了开发新工艺的动力。可数的新工艺的发展,也是基于这些国家老的污水处理厂超负荷改造的需要(曝气生物滤池)和水回用的需求(膜生物反应器)。社会需求是技术发展的最好驱动力,而我们国家对污水处理工艺有极大的迫切的需求,我国对污水处理技术开发仍有巨大的动力。


        2、从可持续性思考城镇污水处理工艺技术


        目前我国城市污水处理厂普遍采用的工艺是国外在水污染控制过程中,被证明是行之有效的技术。并且是欧美等发达国家所采用的主导技术,我国与欧美等国家与工艺几乎处在同一水平上,但是我国的国民生产总值远远低于上述国家,采用以上技术是否能够完全适合我国的国情,是我们需要考虑的一个问题。这需要从技术的先进性和是否代表了可持续发展的方向两个方面来考虑。


        目前政府往往简单认为一个城市有污水处理厂,就是经济和环境协调发展,符合了可持续发展的原则。对可持续发展全面理解应该根据世界环境与发展委员会在《我们共同的未来》的报告中对可持续发展的定义:“可持续发展是即满足当代人的需求,而又不损害后代人满足其需求的能力的发展”。从技术层面考虑需要判断污水处理工艺是否符合可持续发展原则,需要从可持续发展的公平性原则(是否体现资源和环境共享)、持续性(是否满足资源和环境的永续性利用)和共同性原则(是否有利于解决全球性环境问题)方面来考虑。


        目前国内大多采用国外引进的延时曝气的氧化沟、SBR等工艺。首先,这些工艺是上世纪六、七十年代开发的工艺,是根据西方,特别欧洲国家排放标准制订的工艺。例如采用延时曝气低负荷工艺特别适合北欧国家的气候条件(冬季低温),而延时曝气对污泥是采用好氧稳定的方法,采用耗能的方法进行污泥稳定化处理。适合了这些国家的国情和社会、经济发展情况。


        事实上,低负荷曝气池的池容和设备是中、高负荷活性污泥工艺的几倍,在建筑材料和土地资源上是高消耗,相应的投资要高数倍;其次,延时曝气系统能耗比中、高负荷活性污泥要高40~50%左右。同时,能耗增加会带来了直接运行费的增加,能耗增加也会还要增加间接投资。据资料报道目前国内每kW发电能力除尘脱硫需要投资500~1000元,则每万吨污水增加的脱硫投资需要25~50万元。按脱硫投资为电站投资10%计,则增加的电厂投资为 250~500万元,是污水处理投资的50%以上。对于我国这样一个资源不足、能源日益短缺、人口众多的发展中国家,是否适合推广这种低负荷的活性污泥工艺是值得推敲的问题。从可持续发展角度讲,采用延时曝气这种高资源占用和能源消耗的低负荷工艺,并以耗能的方式取得污泥的稳定工艺是不适合可持续发展的基本原则的,也是不适合中国国情的。我们应该开发科技含量高、经济效益好、资源消耗低、环境污染少反应器。


        3、关于城镇污水处理厂污泥处理的思考


        城市污水污泥处理和处置方面在我国还刚刚起步,与国外先进国家相比尚有较大差距。随着大量污水处理厂的投产,污泥产量将会有大幅度的增加。污泥厌氧消化的投资高,污泥处理费用约占污水处理厂投资和运行费用的20%~40%。在我国仅有的十几座污泥消化池中,能够正常运行的为数不多,有些池子根本就没有运行。这也是导致我国近年大量采用带有延时曝气功能的氧化沟等技术的原因。采用高效(高负荷)、低耗污水处理工艺的关键之一是解决城市污水厂污泥处理技术和问题,可以讲具有特点的解决我国城镇污水工艺的进步,在很大程度上取决于污泥处理和利用技术的进步。为了解决这一问题有必要加强污泥处理与利用的研究。


        另外,在一个小区域内的物质、能量(粮食、蔬菜等)是从周边地区流向中小城镇,污水处理产生的污泥是这种流动的结果,从生态平衡角度讲这些物质是需要回到周边的生态系统中,否则长期发展会造成一个区域内土壤生态的失衡。因此从污泥最终处置的出路来看,中小城镇的污泥农用是最为可行和现实的处置方案。


        四、城市污水处理新工艺新技术介绍


        1、生物化学反应理论基础


        人们过去对于好氧微生物和专性厌氧微生物研究十分充分, 而对兼氧性微生物的研究不够。各种类型有机污染物的厌氧(缺氧)、好氧降解反应过程汇总如下。


        好氧(缺氧)过程 厌氧(缺氧)过程


        1) COD®H2O+CO2 (传统好氧)


        2) COD ® CH4+CO2(传统厌氧)


        3) NH4+ ®NO2- ®NO3- (硝化)


        4) NO3-( NO2-)® N2 (厌氧或缺氧(短程)反硝化)


        5) PO4-+生物-P ®生物-P(厌氧)


        6) NH4++NO2-® N2 (厌氧氨氧化)


        7) H2S ®S0 (微需氧或缺氧)


        8) SO4= ® H2S (厌氧反应)


        9) R-Cl® CO2 + Cl- (好氧反应)


        10) RCCl® CH4+ CO2+ Cl- (厌氧反应)


        反应式(1、2和3)为传统厌氧和好氧工艺,其他均为兼性菌的反应。事实上,利用兼性细菌的工艺人们早已涉及,如,对去除 N、P的A2O或AO工艺(反应4、5),利用兼性菌在好氧条件下进行好氧代谢,而在厌氧条件下进行厌氧代谢。在含有硫酸盐的有机废水中,厌氧反应将有机物和硫酸盐分别转化为有机酸和硫化氢(反应8)。产生的硫化氢被微需氧细菌直接氧化为硫元素。这可以用来去除硫化物并回收硫元素(反应7)。


        Kuenen等发现某些细菌在硝化、反硝化应用中能利用NO2-或NO3-作电子受体将NH4+氧化为N2和气态氮化物(反应式5);在这一反应的基础上,正在开发ANAMMOX工艺和OLAND等工艺。最新研究表明一些在好氧状态下难降解芳香族和卤代烃在厌氧条件下容易分解(反应9、10)。


        以上反应为一些新工艺的化学反应基础,其基本原理是新工艺开发的基础和生长点。成功的利用兼性微生物的典型工艺是北京环保所在80年代开发的水解-好氧处理工艺。水解池利用水解和产酸微生物,将污水中的固体、大分子和不易生物降解的有机物降解为易于生物降解的小分子有机物,使得污水在后续的好氧单元以较少的能耗和较短的停留时间下得到处理。


        需要说明的是水解-好氧工艺中的水解(酸化)过程与好氧AO(HO)、A2O和AB等工艺中A段中发生的水解过程也是有较大区别的。这表现在以下两个方面:首先是菌种不同,如上所述在水解工艺中的优势菌群是厌氧微生物,以兼性兼性微生物为主,而在好氧AO(HO)、 A2O和AB等工艺中A段中的优势菌是以好氧菌为主。仅仅部分兼性菌参加反应;其次,在反应器内的污泥浓度不同,水解工艺采用的是升流式反应器,其中污泥浓度可以达到15~25g/L,而好氧AO、A2O和AB等工艺中从二沉池回流污泥浓度一般最高为5~8g/L,并且以好氧菌为主。以上的差别造成了水解工艺是完全的水解,而好氧AO(HO)、A2O和AB等工艺中A段仅仅发生部分水解。


        从大量实践来看,采用水解-活性污泥法,与传统的活性污泥相比,其基建投资,能耗和运行费用可分别节省30%以上。从目前我们大量实践来看:对于不要求脱氮除磷的中、小城镇污水处理厂的投资为500~700元/m3(污水);对需要脱氮除磷的污水处理厂投资在800元 /m3(污水)左右。由于水解池具有改善污水可生化性的特点,使得工艺不仅适用于易生物降解的城市污水等。同时更适用于处理不易生物降解的某些工业废水。


        2、城市污水处理工艺的极限


        对于污水处理系统存在三种基本类型的微生物聚集体存在的方式:固定膜(如:滴滤池)、絮状污泥(活性污泥工艺)和悬浮生物膜颗粒(移动床、流化床和气提反应器等)。以上工艺开发和存在的内在原因是人们不断的追求高效率、低能耗、低成本和低的占地面积等高的性能指标的不断实践的产物。而开发的不同反应器的应用受到了技术、经济和理论条件的限制。这些限制体现在对于好氧生物反应器研究和开发,受到了生物生长特性(生物量和活性)、反应器的形式(固定床、悬浮床和流化床)、传质条件(氧的供给)和固液分离(沉淀、过滤)等诸多因素的限制。这些限制条件综合结果构成对于好氧生物反应器的极限,长期以来人们围绕这些限制因素根据各个时期的理论、技术、材料等进展,进行了长期不懈的研究和开发工作。


        通过对上述限制条件的数学推导,代入主要的好氧系统的基本设计条件(例如:供氧能力、污泥浓度、固液分离负荷等),图1给出不同系统用于污水处理运行条件的范围。根据不同类型反应器的设计准则将浓度-流量平面划成不同的区域。在浓度-流量相平面上不同区域的应用条件为:


        区域A:长停留时间的悬浮生长系统;


        区域B:在高流量条件下,颗粒和絮体将被冲出,只有固定膜可以保持在系统中;


        区域C:流量和负荷适合于颗粒污泥和悬浮生物膜颗粒反应器;


        区域D:只有可以采用分离和回流措施,流量和负荷适合于絮状污泥(如活性污泥工艺),这一部分与C区域存在重叠;


        区域E:对于高浓度和低流量的废水,可以采用升流式污泥床反应器。污泥可以不需要外部的分离器而保持在系统中。

3页 当前为第 2[首页] [上一页] [下一页] [末页]


(官方微信号:chinajnhb)
(扫一扫,节能环保信息随手掌控)
免责声明: 本文仅代表作者个人观点,与 绿色节能环保网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。