3.2 pH的影响
以三元电极SPR为阳极材料,电流密度为10A/dm2,Cl-浓度为2 000 mg/L,以SBR反应器出水为试验水样,调节溶液的pH值分别为4和8,电解试验结果见图3。
图3表明,酸性条件下的电解反应更有利于对COD的去除。一般,电解氧化过程中有大量的CO2产生,在水溶液中达到水解平衡,生成CO32-和HCO3-,而它们与·OH基团的反应速度要高于OH基团氧化溶液中有机物的速度。酸性条件下,化学平衡的移动不利于溶液中CO32-和HCO3-的存在,从而间接促进了电解反应对COD的去除。从图3中还可看出,COD被去除60%以后,氧化速度呈减缓趋势,这是由于渗滤液中易氧化物质被先行氧化而导致后阶段氧化速度放慢。
3.3 Cl-浓度的影响
由于电极氧化过程中间接氧化起了很重要的作用,Cl-浓度的影响就成了不可忽略的因素。以三元电极SPR为阳极材料,电流密度为10A/dm2,以SBR反应器出水为试验水样,溶液的pH值为8,Cl-浓度分别为2 500、5 000和10 000 mg/L时的COD和NH3-N的电解去除结果分别见图4和图5。
由图4和图5的结果可见,Cl-的存在对COD及NH3-N的去除影响明显,随着Cl-浓度的增加去除率也明显增加,这说明间接氧化作用在COD及NH3-N的去除过程中起着主要作用。比较图4和图5发现,NH3-N的去除主要发生在电解氧化反应的前1 h,该时段内COD仅有约30%被去除。图解同时也说明COD的组分中约70%是相对难降解的,而直到NH3-N被去除后,此部分COD的去除才迅速增加。由此可见,电解过程中的高浓度NH3-N必会影响到COD的去除效率,如能在处理前通过其他方法(如吹脱)去除NH3-N,则有利于COD的去除,同时也会大大节约电能。
3 4电流密度的影响
合适的电流密度对电解氧化反应效率的影响是显而易见的,而过高的电流密度会导致能源浪费。以SPR为电极材料,电流密度为5、7.5、10、12.5A/dm2,以SBR反应器出水为处理对象,对照了未补充和补充Cl-浓度至5 000 mg/L时的处理结果,见图6、图7。
图6表明,低Cl-浓度时,电流密度对COD及NH3-N的去除影响不大;电流密度为2.5A/dm2时,阳极表面出现棕色沉淀物,这可能是由于有机物在较弱的氧化作用下发生了聚合作用而形成的聚合物。图7表明,高Cl-浓度时,COD及NH3-N的去除率随电流密度的增加而增加,这是由于电流密度高时,阳极的电极电位也高,相应的电解氧化反应也越强。这同时也进一步表明,间接氧化在电解氧化过程中起主导作用。实际操作时,应结合运行费用和处理效果综合考虑。
3.5 适宜条件下的电解效果
经SBR处理后的渗滤液,调节pH值为4,Cl-浓度为5 000 mg/L,选择电流密度为10 A/dm2,SPR三元电极为阳极,电解时间为4 h,处理结果如表3。
表3 SBR处理后的渗滤液电解效果
项目 |
COD(mg/L) |
NH3-N(mg/L) |
色度(倍) |
处理前 |
693 |
263 |
200 |
处理后 |
65 |
未检出 |
≤30 |
去除率(%) |
90.6 |
100 |
85 |
4 结论
电解氧化法对垃圾渗滤液的深度处理具有较好的 应用 前景。电解氧化过程中,NH3-N被优先去除,其次是COD;电解氧化反应在一定浓度Cl-存在时,以间接氧化为主,与直接氧化作用并存;SPR三元电极的处理效果优于DSA二元电极和石墨电极;酸性条件比碱性条件更有利于电解氧化作用对COD及NH3-N的去除;Cl-浓度高时,氧化去除COD及NH3-N的效果好;电流密度高时,有利于间接氧化作用的发生。适宜的电解氧化条件是:pH值为4,Cl-浓度为5 000 mg/L,电流密度为10A/dm2,SPR三元电极为阳极,电解时间4 h。COD及NH3-N浓度分别为693 mg/L和263 mg/L时,COD去除率为90.6%,NH3-N的去除率为100%。
免责声明: 本文仅代表作者个人观点,与 绿色节能环保网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。