您好,欢迎来到绿色节能环保网 [请登录] [免费注册]
当前位置: 首页 » 技术资料 » 环保技术 > 水处理 » 正文

催化还原脱除地下水中硝酸盐的研究

发布时间:2010年7月19日 来源:环境科学学报

....

  随着工农业的发展,地下水中硝酸盐污染已经成为重要的环境问题. 硝酸盐在水中溶解度高、稳定性好,传统给水处理工艺技术难以将其去除. 近年来提出的催化反硝化是一种经可行的脱氮方法. 德国学者Vorlop K. D. 等(1989)最早提出在Pd2Cu双金属催化剂作用下, H2能将硝酸盐还原成氮气或氨氮. NO-3 的转化方程式可以表示为:2NO-3 + 5H2 =N2 + 2OH- + 4H2O (1)NO-3 + 4H2 =NH+4 + 2OH- +H2O (2)随后的大量研究(Horold et al. , 1993; Ilinitchet al. , 2000; Chen Yingxue et al. , 2003)也证实了Pd2Cu双金属催化剂作用下硝酸盐的去除率可以达到80%~95%,但反应同时存在着副产物NH+4 . 如何有效地抑制副产物NH+4 的产生,并提高催化剂活性是目前催化还原去除硝酸盐的技术难点. Prüsse U 等(2000)通过研究认为,溶液pH值是影响硝酸盐催化还原反应活性和选择性的重要因素. 在用H2作还原剂还原硝酸盐的过程中,随着反应的进行,溶液的pH值随之上升,由此导致反应的活性或选择性下降. 近年来出现许多解决这个问题的方法,一种方法是使用能降低载体孔内物质扩散限制的载体材料,例如使用膜(Strukul et al. , 2000)、布纤维(Daub et al. , 1999).另一种方法是使用能产生酸性位的金属负载的离子交换剂作为载体(Gasparovicova et al. , 1999). 但这些努力都不是很有效. NaCOOH无毒无害,作为还原剂在有机合成中常被应用,表现出良好的还原性. 而且NaCOOH在催化剂作用下提供H的同时产生CO2 ,中和反应过程中产生的OH- ,可以解决H2作为还原剂时引起的溶液pH梯度问题,有利于提高催化活性和选择性,但目前尚未被应用到硝酸盐的还原反应中.因此,本文提出以 NaCOOH作为还原剂,进行了催化还原硝酸盐的试验研究,探讨了催化活性和选择性的影响因素,旨在寻求一条安全、简单易行的高效去除地下水中硝酸盐的途径.


  1 实验部分( Experiments)


  1. 1 试剂与仪器


  γ2氧化铝, 100 ~200 目,购自上海陆都化学试剂厂;氯化钯为分析纯,天津市德兰精细化工厂;硝酸铜为分析纯,天津化学试剂三厂. 其它试剂均为分析纯,实验溶液皆用去离子水配制.比表面积(BET)测定在美国康塔公司生产的NOVA - 2000比表面积及孔隙度分析仪上进行;等离子体发射光谱( ICP)用美国Jarreell2A sh公司生产的ICAP29000 (N +M) 等离子体发射光谱仪测定; X - 衍射(XRD)测量用日本岛津理学电机公司的D /Max22500X射线衍射仪进行(Cu靶Kα线) ;透射电子显微镜( TEM)测量在荷兰菲利浦公司的T20ST透射电子显微镜上进行; X射线能谱分析用荷兰菲利浦公司的X射线能量分散谱仪( EDX)进行; 752N型紫外可见分光光度计为上海精密科学仪器有限公司生产,用来测量溶液中NO -3 、NH+4 和NO -
2 浓度.


  1. 2 催化剂的制备


  采用浸渍法制备催化剂. 以γ2Al2O3为催化剂载体,在500℃下煅烧活化5h后备用. 前体物PdCl2经前处理( Simonov et al. , 1997 ) 后配制与Cu (NO3 ) 2·3H2O的混合溶液100 mL,使Pd2 +浓度为2 g·L - 1 , Cu2 +浓度为0. 5g·L - 1 ;然后加入4. 75 g已处理过的γ2Al2O3 ,搅拌均匀静置过夜,在70℃水浴中搅拌脱水,干燥后移入马弗炉,于350℃灼烧2 h;自然冷却后用过量的KBH4还原,最后经充分洗涤、离心、干燥即得到负载型催化剂Pd2Cu /γ2Al2 O3 ,ICP测定其中Pd、Cu含量分别为3. 97%、1. 04%.


  1. 3 催化剂的表征用BET对催化剂进行比表面积、孔容孔隙分析. 用XRD对催化剂进行物相分析, CuKα辐射源,石墨单色器,管电压为50 kV, 管电流为100 mA,扫描范围2θ= 3~80°,扫描速度4°·min- 1 ;测试时将粉末样品置于载玻片上压制成片状,用TEM技术观察催化剂表面形貌以及催化剂表面金属分布状况. 用EDX对催化剂表层进行组分分析.


  1. 4 催化还原反应实验


  催化还原反应装置由磁力搅拌器和250 mL玻璃反应器组成. 向反应器中投加0. 4 g的Pd2Cu /γ2Al2O3催化剂和600 mg·L - 1的NaCOOH溶液190 mL,用0. 4 mol·L - 1的HCOOH调节初始pH值为415后通N2 30 min排除水中溶解氧;然后加入2000 mg·L - 1的硝酸盐溶液10mL使有效的反应体积为200 mL,体系中NO-3 初始浓度为100 mg·L - 1 ,在500 r·min- 1下连续快速搅拌反应. 定时取3~5 mL水样经0. 45μm的滤膜过滤后测定NO-3 、NH+4 和NO-2 浓度. NO-3 浓度用紫外分光光度法测定,NH+4 浓度用纳氏试剂法测定,NO-2 浓度用α - 萘胺比色法测定.催化剂活性是指单位时间单位质量金属催化剂作用下硝酸盐的去除量(mg·g- 1·min- 1 ). 反应选择性用副产物氨氮的产率来表示,氨氮产率越低则反应选择性就越高,相反氨氮产率越高则反应选择性越低.


  2 结果 (Results)


  2. 1 催化剂的表征


  表1为催化剂Pd2Cu /γ2Al2O3及其载体γ2Al2O3的比表面积、孔容和孔径参数. 由表可以看出,催化剂载体具有较大的比表面积和孔容,属于中孔氧化铝. 负载上活性金属后催化剂比表面积、孔容、孔径略有下降, γ - Al2O3的结构性能未发生变化. 孔径由原来的6nm降到4. 6 nm,说明载体γ- Al2O3内表面形成了均匀的纳米金属薄层,未出现明显团聚和堵塞载体的孔结构.表1 催化剂及其载体的比表面积、孔容和孔径参数
Table 1  The specific surface area of the catalyst and support  催化剂 比表面积/ (m2·g -1 )  孔容/ ( cm3·g - 1 )  孔径/ nm  γ2A l2O3 Pd Cu /γA l2O3  144 131  0. 22 0. 19  6 4 6 
XRD分析结果表明,γ2Al2O3和Pd2Cu /γ2Al2O3的XRD 谱图没有明显区别, 主要衍射峰均为γ2Al2O3 ,未检测到Pd和Cu的衍射峰. 因而进一步对催化剂进行了TEM和EDX分析. 图1为催化剂Pd2Cu /γ2Al2O3的TEM照片,图中黑色物质为金属颗粒,可以看出,催化剂的活性组分均匀分布于载体表面. 图2为催化剂Pd2Cu /γ2Al2O3的EDX能谱图,可以看出,催化剂表面金属元素为Pd和Cu.

 


图1 催化剂Pd2Cu /γ2Al2O3的透射电镜( TEM)照片Fig. 1 TEM photograph of Pd2Cu /γ2Al2O3 catalyst

 

 

  图2 催化剂Pd2Cu /γ2Al2O3的EDX能谱图Fig. 2  EDX Spectrum of Pd2Cu /γ2Al2O3 catalyst


  2. 2 催化还原反应


  图3为催化剂Pd2Cu /γ2Al2O3作用下,NaCOOH作为还原剂脱除NO-3 的时间曲线. 可以看出,反应前30min内NO-3 去除速率较高,NO-3 浓度几乎呈线性减少. 反应存在中间产物NO-2 和副产物NH+4 .NO-3 在75min 时转化完全,反应结束时检测不到NO-2 ,NH+4 的产率为13% , 氮的脱除效率可以达到87%.

 

 

  图3 甲酸钠催化还原NO -3 的时间曲线Fig. 3  Temporal curves of catalytic reduction of nitrate bysodium formate2. 3 不同反应条件下的催化还原反应按1. 4节的方法依次改变反应初始pH值、催化剂投加量和还原剂NaCOOH 浓度进行催化还原反应,计算反应30min时的催化活性和氨氮产率.图4为不同初始pH值对NO-3 催化还原反应的影响. 可以看出,初始pH值过高或过低都不利于提高催化剂活性,初始pH值为4时催化剂具有最高的活性;反应选择性随着初始pH值的升高而增加.图5为不同催化剂投加量对催化还原反应的影响,可以看出,随着催化剂投加量增加催化活性略有降低,而反应选择性则显著升高. 图6 为NaCOOH浓度对催化还原反应的影响,可以看出,随着NaCOOH浓度增加,催化活性逐渐增加,但NaCOOH浓度>600 mg·L - 1反应选择性却明显降低. 综上所述,去除100 mg·L - 1 NO-3 ,初始pH值4. 5,催化剂投加量2 g·L - 1 ,甲酸钠浓度600 mg·L - 1为最佳的反应条件.

 

 

图4 初始pH值对NO -3 催化还原反应的影响Fig. 4 Effect of initial pH value on catalytic reduction of nitrate

 

 

图5 催化剂投加量对NO -3 催化还原反应的影响Fig. 5 Effect of catalyst amount on catalytic reduction of nitrate

2页 当前为第 1[首页] [上一页] [下一页] [末页]


(官方微信号:chinajnhb)
(扫一扫,节能环保信息随手掌控)
免责声明: 本文仅代表作者个人观点,与 绿色节能环保网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。