2.2 有关具体措施和政策建议
2.2.1 具体措施
1)风电机组和风电场满足并网技术要求,具备LVRT是遏制风电机组大规模脱网事故的关键。新并网的机组必须具备LVRT,已并网的风电机组必须按要求的计划整改。来不及LVRT改造的,首先确认满足基本的风机运行要求,如并网点电压跌落0.8 pu以下时,需要不跳闸运行0.1~0.2 s,见图1,就能穿越大部分的电网瞬时故障。对已并网的风电场LVRT进行梳理、测试,不具备合格LVRT的风电场,应在规定的期限内完成改造并通过LVRT现场抽检,风电场大规模集中接入点上的风机,应优先安排改造。制造厂应主动配合现场,协商具体改造方案并立即实施。开放风机控制及保护定值设置,优化风机保护与风机控制系统间的配合关系,使风机主控系统和LVRT功能相协调。研究LVRT期间风机向电网提供无功支持的方案,风机在电网电压跌落期间不脱网运行的同时,提供必要的无功输出。同时研究具备高电压穿越(HVRT)的可行性及技术方案,应继续加大投入,提高风机制造质量和研发风电机组控制保护等关键技术。
2)2011 年以来酒泉风电基地多个风电场连续多次出现电缆头故障,应对在网电缆、电缆头及开关柜做全面的隐患排查,并按规程要求全面做高、低压试验。加强对电缆、开关柜、刀闸接头等设备的运行维护管理,完善运行监视手段,配置红外、紫外成像仪等检查仪器或设备,确保及时准确发现并消除隐患。此外鉴于当前低价中标影响产品质量的问题,建议风电场对设备材料采购过程严格把关,尽量选用大型企业或者能生产更高电压等级电缆附件的企业的产品,避免不合格产品挂网运行。电缆附件安装是一个技术性很强的工作,无满足要求的安装场所,不按图纸说明的要求安装,都会留下隐患。要对施工过程加强管理,监理也要具备专业知识,组织具有资质的技术人员安装电缆头,确保工程施工质量。设计时尽可能放大导体截面,降低导体表面的电场强度等。
3)中性点不接地或经消弧线圈接地系统,故障线路和非接地线路仅仅流过微弱的电容电流,无法准确确定是那一条线路发生接地,给接地查找和修复带来困难。基于基波零序电流的幅值、方向等原理的装置的选线效果不太好。而基于小波变换的行波单相选线[13-14],充分利用电网中普遍存在的电流行波来进行故障选线,是故障选线原理的突破,为其提供了全新的思路和新的方案,实际运行证明,有望从根本上解决小电流系统故障选线难题,从而实现快速可靠选线并及时跳闸,可防止故障扩大。由此可见,为了快速自动隔离风场低压系统发生单相接地故障,可以参照以下措施进行整改:对已配置小电流接地选线装置(有跳闸功能或可以容易改造为有跳闸功能)的风电场升压变电站,可将小电流接地选线装置改造为在选线告警的基础上增加选线跳闸功能:选线告警后应经过短延时(如0.5 s)直接跳该馈线开关;若未切除接地线路,母线监测到零序电压且U0》50 V,则经过较长延时(如1.0 s)通过母差保护直接跳开低压母线所有支路开关。对配置小电流接地选线装置无跳闸功能的变电站采用以下方式,若检测到低压母线零序电压U0》50 V,经过较长延时(0.6 s)通过母差保护直接跳开低压母线所有支路开关,或直接切除主变低压侧开关,并要求该变电站尽快加装具有选线跳闸功能的小电流接地选线装置。对未配置小电流接地选线装置的风场升压站,要求尽快配置具有跳闸功能的小电流接地选线装置,优先选用性能优异的行波选线装置。新建风电场35 kV 集电系统应设计为低电阻接地系统(中性点经小电阻接地)并配置接地保护。对已运行的升压站,要逐步改造为低电阻接地系统,因为前述的小电流选线准确率低,误切正常线路的可能性较大。可在35 kV 母线处装设接地变压器,其中性点经电阻接地,电阻值需进行计算,利用35 kV系统发生单相接地故障时的零序电流,快速切除单相接地故障。
4)认真落实国家电网公司《防止风电大规模脱网重点措施》[15],着力加强动态无功补偿设备运行管理,及时处理缺陷并加以改造,实现无功补偿设备的动态部分投自动调整功能,能自动投切滤波支路,确保并且严格按照调度要求投入运行。加强并网风电场调度运行管理,对已并入电网的风电场涉网保护、无功补偿、风机信息上传、调度运行值班、基础管理等方面进行现场检查摸底,不满足标准要求的风电场不与并网。严格风电场负责保护定值的整定管理,确保继电保护履行第一道防线职责。加强运行及管理人员培训,完善运行规程,严格持证上岗制度,强化设备运行维护管理,提高隐患识别和事故处理能力。运行人员熟练掌握风机内部主控系统及设备,熟悉电网调度规程。调度部门要加强指导、监督。
2.2.2 进一步研究的课题
1)国家标准《风电场接入电力系统技术规定》应该针对我国大规模风电基地的建设进行分析研究实践,提出切合实际技术要求,不要一刀切。在满足电网安全稳定的前提下,合理规范风电机组性能,严格风电机组制造技术、安装工艺要求、检测要求以及并网审批程序,做好宣贯,强化监管,从源头上把好风电机组并网关。我国大规模风电基地一般都直接并入220 kV及以上的输电主网,而我国220kV及以上的主网继电保护配置很完善[16],事故快速切除率在多年保持为100%[17],即主网发生短路事故时电压可以到零,但持续时间一般小于0.1 s,对于单相故障,经约1 s的延迟后重合,如果是永久故障,将对风电场造成第二次冲击,对风机的LVRT能力是更加严峻的考验;在长距离超高压输电通道上无功控制困难,如新疆-西北联网通道上变电站大部分为单主变,主变跳闸后,失去对电压的钳制作用,同时失去低压补偿,电压波动大,而且有一定的低频振荡,应该据此对风电基地及其机组提出故障电压穿越等一系列合理的技术要求。
2)风电机组的LVRT技术已经掌握,现在正在加紧改造实施。如果有了LVRT,不切除风电机组,就不会出现随后的高电压,但是对于酒泉风电基地来说,西北-新疆联网通道均为750 kV长距离线路,充电功率大,750 kV哈敦、敦泉、泉河、河武双回线高抗补偿度为86.15%,77.12%,80.15%,76.78%,无功平衡主要依赖静态高低压感性补偿。由N-1计算分析得知,联网通道沿线网架结构较弱,短路容量小,联网通道的短路容量仅为西北主网东部受端系统的一半,相同潮流变化下,电压波动是东部的二倍。如果750 kV线路轻载运行,酒泉单台主变故障切除后750 kV母线电压将上升超过800 kV,出现高电压。需要研究的问题是风电机组需要不需要HVRT、零电压穿越(ZVRT)功能,或者HVRT、ZVRT功能与系统无功电压控制系统的协调配合,需要单一的功能,还是整个风电基地整体加以解决,何种方案更优?在某些情况下,具有LVRT能力的风电场反而对系统稳定不利。风电基地风机具备LVRT功能后,在联网线路潮流大且发生故障的情况下,由于稳定水平限制,输电能力大幅降低,又需要切除风电机组,两者之间有无其他优化解决方案[18]。
3)随着大规模风电机组LVRT改造,在风电基地内如何高效检测LVRT,风电机组并网检测手段的研究开发和优化部署也是一个需要研究的问题。风电机组并网性能检测,关键是LVRT测试手段,中国电力科学研究院已经研制配置了LVRT移动测试设备并具备测试能力和资质。因为风电基地风电机组的大规模投产,即使检验1%的风机,测试能力包括人员和设备都十分紧缺,为了满足现在需要而培训人员和配置设备,以后就有可能出现设备闲置或使用率低的问题,是否需要研制简易的测试设备,是否在必要时进行电网人工接地试验来验证?
4)风电场集电系统中的电缆接头是一个薄弱点,酒泉200 MW大型风电场一般经过经济技术比较后集电系统都选用架空线路方案,每台风机用电缆连接到箱式变的低压侧, 高压侧均用一根YJV22-3×50型电力电缆引接至临近的35 kV架空输电线路上,风电机组所发电能先通过数条LGJ-185/30的35 kV架空线路输送至距330 kV升压变电所围墙外约1 km处,再分别通过多回YJV22-3×150型电力电缆直埋敷设引至330 kV升压变电所35 kV开关柜上,实现与电网的连接。从这里可以看出,这种集电系统是电缆架空线混合系统,电缆接头很多,而且所处环境恶劣,风沙大,温差也大,虽然部分电缆头在密封箱内,也都出现过事故。根据酒泉地区实际,研究风电场35 kV线路不用或少用电缆转接的可行性。
5)大规模风电基地中的大型风电场应该按发电厂看待,新的国标(征求意见稿)《风电场接入电力系统技术规定》中要求:风电场要充分利用风电机组的无功容量及其调节能力;当风电机组的无功容量不能满足系统电压调节需要时,应在风电场集中加装适当容量的无功补偿装置,必要时加装动态无功补偿装置。风电基地主流风电机组为双馈机组(DFIG)和永磁直驱(PMSG)两种,都可以实现有功无功控制的解耦,DFIG的功率因数cosΦ 可以在+0.95至-0.95范围内调节,输出或吸收的无功功率可达有功功率输出的31%。而PMSG采用全功率变流器并网,无功电压控制更加灵活,当cosΦ 可以在+0.93至-0.93范围内调节,输出或吸收的无功功率可达有功功率输出的37%。当有功功率低于额定时,相应的无功能力增大。所以要研究如何发挥风电机组无功能力、发挥风电机组无功能力后风电场集中加装多少容量的无功补偿装置,是否加装动态无功补偿装置。研究风电机组、(动态)无功补偿装置、电网(动态)无功补偿装置和整个系统的多对象协调配合的无功电压协调控制策略,提升低(故障)电压穿越能力、整体抗扰动能力的集群主动式控制策略。按照规划,酒泉风电基地送出系统要加装可控高抗、串补等灵活交流输电装置,还要建设特高压直流送出工程,如何充分协调发挥其功能,有效提升风电接纳能力,是坚强智能电网的研究重点之一[19-20]。
3 结论
大规模风电基地的建设运行中出现的大规模脱网事故给我们上了一节及时的安全课,使我们能够在风电装机容量世界第一的自豪面前保持清醒的头脑。坚定稳健地发展风电,是我国应对气候变化,发展低碳经济,保障能源安全的不二选择。关键是总结经验,有针对性地加强风电的安全管理,庆幸的是目前风电的各种安全运行和发展难题尚处于萌芽阶段,还比较容易解决。本文通过对风电发展、运行及事故的不同层次分析,提出了改造风电机组、改进风电场集电系统设计、强化建设全过程管理和加强人员培训等措施,以系统的观点提出了一些需要进一步研究的课题,希望能有助于理性分析风电发展中存在的问题并逐步加以解决,促进风电与电网的友好发展、和谐共赢。
免责声明: 本文仅代表作者个人观点,与 绿色节能环保网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。