然而,由于重力沉降及清灰降落的粉尘源源不断地向下向后迁移,因而放电通道和净化通道的扩展以及粉尘浓度降低的速率在电场下部进展缓慢。相反,电场上部的含尘浓度迅速而显著地下降,因此,在前级电场面后上部区域必出现强烈的电弧放电,表现为电场闪络频繁,二次电流、电压大幅度波动,电场输入功率不稳。很显然,电场注入功率的大小直接影响电晕封闭出现的范围,从而影响到电场整体功能的发挥,电压电流的大幅度波动必将导致电晕封闭出现的范围不断地随时间发生着较大的变化,该电场分级除尘效率将无法达到应达到的指标。
高浓度电除尘技术方案的优化
3.1 高浓度电除尘与普通电除尘的差异
我们考察已经投运的高浓度电除尘,有一点颇具共性,即在进气口内均设置有预除尘装置。除此之外,有的高浓度电除尘在内部构件的配置上确有一些特殊的方面,但也有的电除尘内部结构和外部配置与常规电除尘没有什么实质性差别,却也能获得预期的效果,这不能不使人怀疑我们以前掌握的关于电晕封闭的理论是不是错了。其实,通过前面的分析而知,只要设备规格足够大,高浓度电除尘总能达到预期的除尘效果,并非没有出现电晕封闭,而是电晕封闭现象在电场内会沿着电场方向逐渐消失。但这并不是说高浓度电除尘无需进行技术方案的优化,人们完全有必要从设备投资造价和运行维护费用等方面对其进行优化设计。
3.2 内部结构方案的优化
我们已经知道,以常规配置(极距、线距、电极形状、高压电源)的电除尘也能够处理高浓度烟气,只是由于前级电场沿电场方向烟尘浓度相差悬殊,放电与荷电情况极不均匀,空间的有效利用率较低,电场内的大部分区域仍发生事实上的电晕封闭,但这一事实被已经存在的放电通道及其扩展区域所反映出来的电流所掩饰而难以觉察。
前已述及,改变电场条件能够克服电晕封闭。首先,缩小极间距将会产生有利的影响,但若极间距缩小很多将使设备重量及造价增加许多,故不可取。线间距缩小的方案也可一试,估计效果并不明显(高浓度条件下由于电晕封闭现象的存在,线距在一定范围内减小对电晕电流分布的影响可以忽略)。目前技术方案的优化重点在于合理确定电极布置形式、增大电场强度、改变流速分布状态使之与电场要求相适应。
改变电极布置形式的目的在于提高平均场强和增大电场整体的输入电流,使得整个电场都能形成净化通道。考虑到电场内部烟气含尘浓度极不均匀(整个电场内沿高度和长度方向的浓度变化都非常显著),对浓度高、电晕封闭严重的电场前部及下部区域,为加速其净化通道的形成,电极放电尖端应当又尖又长。理想的电极布置应按浓度变化情况沿电场高度和长度方向连续变化,这在实际上难以做到,事实上也没有必要。由于净化通道扩展的趋势,在电场始端沿电场高度只要形成一定数量的净化通道,就足以在较短的时间和行程内把净化区域扩展到高度方向整个区域。但电场下部区域由于清灰沉降的原因,沿电场方向烟尘浓度递减缓慢,因而该区域可全部布置成放电强烈的电晕线。
粉尘的重力沉降和清灰降落过程使得高浓度区域向下向后推移,势必增加后续电场的负荷和不利影响。为了减轻这种影响,加速粉尘的降落,缩短其向后迁移的路程,在前级电场的终端设置节流墙,使电场下部的烟气流速降低,即可达此目的。
免责声明: 本文仅代表作者个人观点,与 绿色节能环保网 无关。其原创性以及文中陈述文字和内容未经本站证实, 对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅 作参考,并请自行核实相关内容。